CONSOLIDATING THE REVOLUTION: OPTIMIZING THE POTENTIAL OF REMOTELY PILOTED AIRCRAFT

Lt Gen Dave Deptula, USAF (Ret) Dean, Mitchell Institute of Aerospace Studies June 2017

Background

- Demand and Challenges
- RPA/UAV/Drone Future
- Recommendations
- Discussion

WHY THE STUDY NOW?

- 16 years of surge in RPA to meet combat demands resulted in strained developments: time for an optimized enterprise approach to fully exploit RPA
- Continued growth in mission need paired with budget pressures will demand smarter investments and concepts to meet our security challenges requires a reset to optimize capability and capacity
- Technology advances yet to be implemented are readily available to enhance RPA operations
- Organizational reform can yield significant RPA leverage
- Optimal investment requires thoughtful ends, ways, and means

ATTRIBUTES OF REMOTELY PILOTED AIRCRAFT (RPA)

- Persistence allows time to observe, evaluate, and act very quickly, or to take all the time necessary to be sure of a particular action; communications gateways/key nodes in combat cloud...
- Projects power without projecting vulnerability Can operate remotely; fewer personnel in combat zones
- Undetected penetration / operation
- Facilitates operations in dangerous environments
- Integrates "find, fix, finish" sensor and shooter capabilities on one platform—yields unparalleled flexibility to adapt to changing priorities and targets of opportunity

REMOTELY PILOTED ÅIRCRAFT: MQ-1/MQ-9 Orbit~200 Total Personnel

GROWTH IN REMOTELY PILOTED AIRCRAFT (RPA) USE

Growth in RPA Orbits/CAPs/Lines

* 5 GOCO Orbits added in 2016; 10 in 2017; Army to provide 20 additional for total of 90...

Insatiable demand with no defined end state

WHY "CAPS/ORBITS/LINES" SHOULD BE EVOLVED AS A MEASURE OF MERIT/SUFFICIENCY

Output is What the Warriors Value—Not Numbers of CAPs/Orbits/Lines

TENETS OF RPA EVOLUTION

- RPA compelling where the human is a limitation to mission success
- Seamless manned and unmanned systems integration
- Automation
- "Integrated Systems" approach
- Modularity = Flexibility
- Robust, agile, redundant C2 enables supervisory control ("man on the loop")
- Linked and synchronized connectivity
- Survivable in contested airspace

MQ-9 SORTIES WITH 1 OR MORE STRIKES

CAO: 9 JUNE 2017

AF RPA FLIGHT PLAN: Vision for an unmanned future

An Air Force with...

- Remotely piloted aircraft fully integrated across the full range of operations
- Automated control and modular "plug-and-play" payloads
- Joint RPA solutions and teaming
- An informed industry and academia – knowing where we are going and what technologies to invest in....

Capabilities-based Air Force RPA vision thru 2047: Doctrine, Organization, Training, Materiel, Leadership, Personnel, Facilities

AF RPA FLIGHT PLAN DOTMLPF-P

AF 2009 RPA FLIGHT PLAN: POTENTIAL MISSION SETS FOR RPA

Air Force Vision for RPA in 2014 USAF RPA Vector

• Seamless integration of RPA into operations across all domains and levels of warfare.

• Widespread use of autonomous systems and processes to provide time efficiencies and operational advantages.

• Increasingly interoperable systems through application of open architecture, standards, and modularity.

• Teaming across departments and agencies, coalition partners, academia, and industry.

Small Unmanned Aircraft Systems (SUAS) Flight Plan: 2016-2036

ADVANCED ISR CAPABILITIES

Open architecture allowing modular sensors to be integrated quickly and inexpensively

COMMON ÅIRFRAME WITH MODULAR MISSION BAYS

Pallets

Tactical Transport

Cost effective, multi-mission solution

- Transformable to optimize force mix per phase of conflict
- Simpler common/modular design
- One aircraft design effort
- Lower average production cost
- Lower life cycle costs

Potentially streamlines acquisition & sustainment

ISR Weapons platform

Tanker

Potential Savings - 25% in total aircraft inventory

RPA MODULARITY = ÅGILITY

Day 1, Phase 0	Day 5, Phase II	Day 7, Phase III	Day 12, Phase IV	Day 30, Phase V
Deploys with cargo	Electronic Attack	Refueling and Electronic Attack	Armed ISR CAPS Theater comm relay	ISR support of Irregular Warfare
Reconfigures with SIGINT / IMINT	Suppression of Enemy Air Defense and ISR	"Loyal Wingman" • CAS • Interdiction	Palletized Cargo Movements	

Modularity enables optimized RPA mission reconfiguration in the field

AUTONOMY

WWII	Vietnam	Gulf War	Today	2012 (MAC)	2022 (MAC + 50% auto)	Distant Future
1,000 planes (B-17)	30 planes (F-4)	1 plane (F-117)	1 plane (B-2)	4 planes	Loyal Wingman (Semi-autonomous)	Swarm (Autonomous RPA)
10,000 crew	60 crew	۲ ۲ ۲ crew	2 crew	1 crew	Mission Commander	Mission Director
1 Target	1 Target	2 Targets	80 Targets	32 Targets	More Targets	??? Targets
Mass Aircraft	Tactical	Laser	GPS	MAC	Linked	Collaboration
In-the-Loop	In-the-Loop	In-the-Loop	In-the-Loop	On-the- Loop	Collaborative	Directing

Modularity, automation, and interoperability will multiply the effectiveness and efficiency of acquisition, operations, and maintenance

AUTONOMY – MULTI-ÀIRCRAFT CONTROL MANPOWER SAVINGS IN AN ERA OF LIMITED

^{4.0}

RPAS: AUTOMATED PARTNERS/LOYAL WINGMAN

RPA ENABLING THE "COMBAT CLOUD"

Virtually perpetual RPA fully integrated with systems in every domain integral to enabling a "combat cloud" across the full range of military operations

SWARMING UAVS TO ACHIEVE DESIRED EFFECTS

Kinetic Strike

Real time info to ground teams

Launch/Recovery Team

Multi INT Networked ISR

Multi INT Networked ISR

TECHNOLOGY CHALLENGE ÅREAS

Advanced Control Segment and Mission Management

Operations

- Sense and Avoid
- Air Refueling
- Terminal Operations
- Multi-ship Cooperative Teaming
- Distributed Operations
- Manned-unmanned Teaming

Flexible, Interoperable, Growth-Capable C2 & Information Architectures

Standard & Open Payload Interfaces

Payloads as Services Multifunctional Apertures

COMMUNICATING ACROSS THREAT ENVIRONMENTS

BLOS C2 / Data between RPAs / CAOC via Wideband SATCOM; Bandwidth / Transmissions restricted in AOR

Carrier Strike Group

JFACC/CAOC

Relayed SATCOM and LOS to Forward platforms via RPAs, E-3, Airborne Gateway, etc

Mission Control Element

> Aerial Refueling Tanker / RPA Local Network

LOS C2 / Data via Directional LPL Links to Anti-Access Platforms

A DE TONE

F-35

USAF deep

COMMUNICATING ACROSS THREAT ENVIRONMENTS

Contested

BLOS C2 / Data between RPAs / CAOC via Wideband SATCOM; Bandwidth / Transmissions restricted in AOR

JFACC/CAOC

Permissive

Carrier Strike Group

> Relayed SATCOM and LOS to Forward platforms via RPAs, E-3, Airborne Gateway, etc

Mission Control Element

> Aerial Refueling Tanker / RPA Local Network

LOS C2 / Data via Directional LPI. Links to Anti-Access Platforms

Anti-Access

RECOMMENDATIONS: TECHNOLOGY

- Prioritize technologies that are able to reduce manpower requirements, boost mission efficiency, and rapidly seize new opportunities:
 - Build to open mission standards to facilitate modular plug-and-play integration between aircraft, sensors, other payloads
 - Pursue integrated, collaborative partnering between RPA and other weapons systems (e.g. loyal wingman; manned/unmanded teaming)
 - Automate key functions including landing; multiple aircraft control; sense-and-avoid; and ISR data analysis

RECOMMENDATIONS: ACQUISITION

- Streamline the acquisition process to facilitate buying modern RPA technology in an agile, responsive fashion:
 - Develop common operating standards
 - Acquire aircraft, sensors, and weapons in a decoupled, modular fashion through an open mission systems approach
 - RPA as an early adopter of better buying power initiatives
 - Establish a fast-track technology acquisition pilot program for RPA
 - Streamline foreign military sales so that US allies, partners and friends can access American technologies so the US can benefit from amortizing development costs

RECOMMENDATIONS: ORGANIZATION

- Optimize DOD RPA efforts to net greater capability by aligning the RPA enterprise in a more efficient and effective fashion:
 - Establish a DOD executive agent to coordinate M/HALE RPA
 - Ensure all M/HALE RPA are under the direction of an appropriate joint force air component commander (JFACC) that can optimize employment across geographic COCOMs
 - Integrate RPA into US airspace for training and domestic support missions
 - Rethink traditional mission identification nomenclature for RPAs that better reflect output capability and capacity

OPTIMIZING THE DOD RPA VISION: WHY AN EXECUTIVE AGENCY?

Coordination of separate service-specific M/HALE RPA will:

- Reduce or eliminate acquisition duplication of effort
- Reduce RDT&E funds and timelines by leveraging existing investments
- Reduce logistics and sustainment funding requirements by eliminating redundancies
- Increase interdependency and interoperability
- Build joint solutions—not service-specific solutions
- Provide more capability sooner

Get the <u>most</u> out of RPA to <u>increase</u> joint warfighting capability, while promoting service interdependency and the wisest use of tax dollars

THE FUTURE OF UNMANNED AIR POWER: IMPLICATIONS FOR POLICY & STRATEGY

Ethical implications of RPA use

- Allow for more "ethical" oversight than any other use of force
- In future will become a significant issue with greater autonomy

Cultural implications

- Common perceptions out of sync with reality...
- RPA technology enthusiastically embraced inside the Air Force...

Accuracy/collateral damage

- Are the most precise means of employing force at a distance in a way that reduces collateral damage, and minimizes casualties
- Taliban/ISIS number one cause of civilian casualties in Mid-East

Are RPA subject to excessive exuberance?

- While introducing enormous capability and concept advantages, RPA are not a panacea for air warfare nor replacement for manned aviation
- Vulnerability of RPA in contested/denied airspace is significant